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ABSTRACT.:We call an n-tuple Q1, . . . , QN of positive definite n×n real matrices α-conditioned for some α ≥1 

if for the corresponding quadratic forms qI: R
N
−→ R we have qI(x) ≤αqI (y) for any two vectors x, y∈R

N
 of 

Euclidean unit length and qI(x)≤ αqJ(x) for all 1≤ i, j ≤ n and all x ∈ R
N
. An n-tuple is called doublystochastic if 

the sum of QI is the identity matrix and the trace of each QI is 1. We prove that for any fixed α≥ 1 the mixed 

discriminant of an α-conditioned doubly stochastic n-tuple is n
O(1)

e−
N
. As a corollary, for any α≥ 1 fixed in 

advance, we obtain a polynomial time algorithm approximating the mixed discriminant of an α-conditioned n-

tuple within a polynomial in n factor. 

 

I. INTRODUCTION AND MAIN RESULTS 
 (1.1) Mixed discriminants. LetQ1, . . . , Qnben×nreal symmetric matri-ces. The function det (t1Q1 + . . . + tnQn), 

where t1, . . . , tn are real variables, is a homogeneous polynomial of degree n in t1, . . . , tn and its coefficient 

 

  ∂
n 

(1.1.1) D (Q1, . . . , Qn) = 

 

det (t1Q1 + . . . + tnQn) ∂t1 · · · ∂tn 

 

is called the mixed discriminant of Q1, . . . , Qn (sometimes, the normalizing factor of 1/n! is used). Mixed 

discriminants were introduced by A.D. Alexandrov in his work on mixed volumes [Al38], see also [Le93]. They 

also have some interesting combinatorial applications, see Chapter V of [BR97]. 

Mixed discriminants generalize permanents. If the matrices Q1, . . . , Qn are di-agonal, so that 

 

 Qi = diag (ai1, . . . , ain) for  i = 1, . . . , n, 

then   

(1.1.2) D (Q1, . . . , Qn) = per A where  A = (aij ) 

 

 

and 

X Y
n 

per A = aiσ(i) 

 

σ∈SN i=1 

 

is the permanent of an n × n matrix A. Here the i-th row of A is the diagonal of Qi and Sn is the symmetric group 

of all n! permutations of the set {1, . . . , n}. 

(1.2) Doubly stochastic n-tuples. IfQ1, . . . , Qnare positive semidefinite ma-trices then D (Q1, . . . , Qn) ≥ 0, see 

[Le93]. We say that the n-tuple (Q1, . . . , Qn) is doubly stochastic if Q1, . . . , Qn are positive semidefinite, 

Q1 + . . . + Qn = I and tr Q1 = . . . = tr Qn = 1, 

where I is the n × n identity matrix and tr Q is the trace of Q. We note that if Q1, . . . , Qn are diagonal then the n-

tuple (Q1, . . . , Qn) is doubly stochastic if and only if the matrix A in (1.1.2) is doubly stochastic, that is, non-

negative and has row and column sums 1. 
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In [Ba89] Bapat conjectured what should be the mixed discriminant version of the van der Waerden inequality 

for permanents: if (Q1, . . . , Qn) is a doubly 

stochastic n-tuple then   

(1.2.1) D (Q1, . . . , Qn) ≥ 

n! 

 

nn 

where equality holds if and only if 

1 
Q
1 

=. . .=Q
n 

=
n
I. 

 

The conjecture was proved by Gurvits [Gu06], see also [Gu08] for a more general result with a simpler proof. 

 

In this paper, we prove that D (Q1, . . . , Qn) remains close to n!/n
n
 ≈ e

−n
 if the n-tuple (Q1, . . . , Qn) is doubly 

stochastic and well-conditioned. 

 

(1.3) α-conditioned n-tuples. For a symmetric matrixQ, letλMIN(Q) denotethe minimum eigenvalue of Q and let 

λMAX (Q) denote the maximum eigenvalue of Q. We say that a positive definite matrix Q is α-conditioned for 

some α ≥ 1 if 

λMAX(Q) ≤ αλMIN(Q). 

 

Equivalently, let q : R
n
 −→ R be the corresponding quadratic form defined by 

 

q(x) = Qx, x 

for 

x ∈ Rn, 

 

where · , · 

 

is the standard inner product in Rn. Then Q is α-conditioned if 

q(x)≤ αq(y) 

for all 

x, y ∈ Rn 

such that 

x=y= 1, 

 

where · is the standard Euclidean norm in Rn. 

 

We say that an n-tuple (Q1, . . . , Qn) is α-conditioned if each matrix Qi is α-conditioned and 

qi(x) ≤ αqj (x) for all 1 ≤ i, j ≤ n and all x ∈ R
n
, where q1, . . . , qn : R

n
 −→ R are the corresponding quadratic 

forms. 

The main result of this paper is the following inequality. 

 

(1.4) Theorem. Let(Q1, . . . , Qn)be anα-conditioned doubly stochasticn-tupleof positive definite n × n matrices. 

Then 

 

D (Q1, . . . Qn) ≤ n
α2

 e
−(n−1)

. 

 

Combining the bound of Theorem 1.4 with (1.2.1), we conclude that for any α ≥ 1, fixed in advance, the mixed 

discriminant of an α-conditioned doubly stochastic 

 

n-tuple is within a polynomial in n factor of e
−n

. If we allow α to vary with n then p 

 

as long as α ≪LN
n
n , the logarithmic order of the mixed discriminant is captured by e

−n
. 

 



Concentration of the Mixed Discriminant of Well-Conditioned Matrices. 

57 

The estimate of Theorem 1.4 is unlikely to be precise. It can be considered as a (weak) mixed discriminant 

extension of the Bregman - Minc inequality for permanents (we discuss the connection in Section 1.7). 

 

(1.5) Scaling. We say that ann-tuple (P1, . . . , Pn) ofn×npositive definitematrices is obtained from an n-tuple (Q1, 

. . . , Qn) of n×n positive definite matrices by scaling if for some invertible n × n matrix T and real τ1, . . . , τn> 0, 

we have 

 

(1.5.1) Pi = τiT ∗QiT  for i = 1, . . . , n, 

where T ∗ is the transpose of T . As easily follows from (1.1.1), 

(1.5.2) D (P1, . . . , Pn) = (det T )
2 n

  τi
!
 D (Q1, . . . , Qn) , 

  Y 

i=1 

 

provided (1.5.1) holds. 

This notion of scaling extends the notion of scaling for positive matrices by Sinkhorn [Si64] to n-tuples 

of positive definite matrices. Gurvits and Samorodnitsky proved in [GS02] that any n-tuple of n×n positive 

definite matrices can be obtained by scaling from a doubly stochastic n-tuple, and, moreover, this can be 

achieved in polynomial time, as it reduces to solving a convex optimization problem (the gist of their algorithm 

is given by Theorem 2.1 below). More generally, Gurvits and Samorodnitsky discuss when an n-tuple of 

positive semidefinite matrices can be scaled to a doubly stochastic n-tuple. As is discussed in [GS02], the 

inequality (1.2.1), together with the scaling algorithm, the identity (1.5.2) and the inequality 

 

D (Q1, . . . , Qn) ≤ 1 

for doubly stochastic n-tuples (Q1, . . . , Qn), allow one to estimate within a factor of n!/n
n
 ≈ e

−n
 the mixed 

discriminant of any given n-tuple of n × n positive semidefinite matrices in polynomial time. 

In this paper, we prove that if a doubly stochastic n-tuple (P1, . . . , Pn) is ob-tained from an α-

conditioned n-tuple of positive definite matrices then the n-tuple (P1, . . . , Pn) is α
2
-conditioned (see Lemma 2.4 

below). We also prove the following strengthening of Theorem 1.4. 

 

(1.6) Theorem. Suppose that(Q1, . . . , Qn)is anα-conditionedn-tuple ofn×npositive definite matrices and suppose 

that (P1, . . . , Pn) is a doubly stochastic n-tuple of positive definite matrices obtained from (Q1, . . . , Qn) by 

scaling. Then 

 

D (P1, . . . , Pn) ≤ n
α2

 e
−(n−1)

. 

 

Together with the scaling algorithm of [GS02] and the inequality (1.2.1), The- 

 

orem 1.6 allows us to approximate in polynomial time the mixed discriminant D (Q1, . . . , Qn) of an α-

conditioned n-tuple (Q1, . . . , Qn) within a factor of n
α2

 . 

Note that the value of D (Q1, . . . , Qn) may vary within a factor of α
n
. 

 

(1.7) Connections to the Bregman - Minc inequality. The following inequal-ity for permanents of 0-1 matrices 

was conjectured by Minc [Mi63] and proved by Bregman [Br73], see also [Sc78] for a much simplified proof: if 

A is an n × n matrix with 0-1 entries and row sums r1, . . . , rn, then 

 

 n 

 Y 

(1.7.1) per A ≤(ri!)
1/r

I . 

i=1 

 

The author learned from A. Samorodnitsky [Sa00] the following restatement of (1.7.1), see also [So03]. 

Suppose that B = (bij ) is an n × n stochastic matrix (that is, a non-negative matrix with row sums 1) such that 

 

 1  

(1.7.2) 0 ≤ bij  ≤  for all  i, j 



Concentration of the Mixed Discriminant of Well-Conditioned Matrices. 

58 

ri 

and some positive integers r1, . . . , rn. Then 

Y
n
(ri!)

1/r
I 

(1.7.3) per B  ≤ . 

 

i=1 
ri 

 

Indeed, the function B → per B is linear in each row and hence its maximum value on the polyhedron 

of stochastic matrices satisfying (1.7.2) is attained at a vertex of the polyhedron, that is, where bij∈ {0, 1/ri} for 

all i, j. Multiplying the i-th row of B by ri, we obtain a 0-1 matrix A with row sums r1, . . . , rn and hence (1.7.3) 

follows by (1.7.1). 

Suppose now that B is a doubly stochastic matrix whose entries do not exceed α/n for some α ≥ 1. Combining 

(1.7.3) with the van der Waerden lower bound, we obtain that 

 

(1.7.4) per B = e
−n

n
O(α)

. 

 

Ideally, we would like to obtain a similar to (1.7.4) estimate for the mixed discrimi-nants D (Q1, . . . , Qn) of 

doubly stochastic n-tuples of positive semidefinite matrices satisfying 

 

(1.7.5) λMAX (Qi) ≤ 

α 

for  i = 1, . . . , n. 

 

n 

    

 

In Theorem 1.4 such an estimate is obtained under a stronger assumption that the n-tuple (Q1, . . . , Qn) 

in addition to being doubly stochastic is also α-conditioned. This of course implies (1.7.5) but it also prohibits Qi 

from having small (in partic-ular, 0) eigenvalues. The question whether a similar to Theorem 1.4 bound can be 

proven under the the weaker assumption of (1.7.5) together with the assumption that (Q1, . . . , Qn) is doubly 

stochastic remains open. 

 

In Section 2 we collect various preliminaries and in Section 3 we prove Theorems 1.4 and 1.6. 

 

II. PRELIMINARIES 
First, we restate a result of Gurvits and Samorodnitsky [GS02] that is at the heart of their algorithm to estimate 

the mixed discriminant. We state it in the particular case of positive definite matrices. 

(2.1) Theorem. LetQ1, . . . , Qnben×npositive definite matrices, letH⊂R
n 

be the hyperplane, 

n xi = 0
) 

 

H = 
(
(x1, . . . , xn) :  

 X   

 i=1   

and let f : H −→ R be the function  

exIQi
! 

 

f (x1, . . . , xn) = ln det n . 

 X  

i=1 

 

Then f is strictly convex on H and attains its minimum on H at a unique point (ξ1, . . . , ξn). Let S be an n × n, 

necessarily invertible, matrix such that 

 

 n 

 X 

(2.1.1) S∗S =e
ξ
I Qi 

i=1 
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(such a matrix exists since the matrix in the right hand side of (2.1.1) is positive definite). Let 

τi = e
ξ
I for i = 1, . . . , n, 

 

let T = S
−1

 and let 

 

Bi = τiT ∗QiT for i = 1, . . . , n. 

 

Then (B1, . . . , Bn) is a doubly stochastic n-tuple of positive definite matrices. 

 

We will need the following simple observation regarding matrices B1, . . . , Bn constructed in Theorem 2.1. 

(2.2) Lemma. Suppose that for the matricesQ1, . . . , Qnin Theorem 2.1, we have 

 

X
n 

tr Qi = n. 

 

i=1 

 

Then, for the matrices B1, . . . , Bn constructed in Theorem 2.1, we have 

 

D (B1, . . . , Bn) ≥ D (Q1, . . . , Qn) . 

 

 

Proof. We have  

n
  τi

!
 D (Q1, . . . , Qn) . (2.2.1) D (B1, . . . , Bn) = (det T )

2 
 

   Y 

   i=1 

Now, 

n
  τi = exp 

(n
  ξi

)
 = 1 (2.2.2) 

 Y X 

 i=1 i=1 

and 

(detT)
2

=  det
n

eξIQi
!−1 

 

(2.2.3) = exp {−f (ξ1, . . . , ξn)} . 

 X   

 i=1   

Since (ξ1, . . . , ξn) is the minimum point of f on H, we have 

   n 

   X 

(2.2.4) f (ξ1, . . . , ξn) ≤ f (0, . . . , 0) = ln det Q  where  Q =Qi. 

i=1 

 

We observe that Q is a positive definite matrix with eigenvalues, say, λ1, . . . , λn such that 

n  n      

X  X      

 λi = tr Q = tr Qi = n  and λ1, . . . , λn> 0. 

i=1  i=1      

Applying the arithmetic - geometric mean inequality, we obtain 
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(2.2.5) det Q = λ1 · · · λn  ≤ 
λ
1 

+.
n n = 1. 

    

..+λ 

n 

     

     

Combining (2.2.1) – (2.2.5), we complete the proof.    

        

 

(2.3) From symmetric matrices to quadratic forms. As in Section 1.3, withan n × n symmetric matrix Q 

we associate the quadratic form q : R
n
 −→ R. We define the eigenvalues, the trace, and the determinant of q as 

those of Q. Consequently, we define the mixed discriminant D (q1, . . . , qn) of quadratic forms q1, . . . , qn. An n-

tuple of positive semidefinite quadratic forms q1, . . . , qn : R
n
 −→ R is doubly stochastic if 

 

X
n 

qi(x) = x 
2
 for all x ∈ R

n
 and tr q1 = . . . = tr qn = 1. 

i=1 

 

An n-tuple of quadratic forms p1, . . . , pn  : R
n
  −→ R

n
  is obtained from an n- 

tuple q1, . . . , qn : R
n
 −→ R by scaling if for some invertible linear transformation 

T : R
n
 −→ R

n
 and real τ1, . . . , τn> 0 we have 

 

pi(x) = τiqi(T x) for all x ∈ R
n
 and all i = 1, . . . , n. 

 

One advantage of working with quadratic forms as opposed to matrices is that it is particularly easy to 

define the restriction of a quadratic form onto a subspace. We will use the following construction: suppose that 

q1, . . . , qn : R
n
 −→ R are positive definite quadratic forms and let L ⊂ R

n
 be an m-dimensional subspace for 

some 1 ≤ m ≤ n. Then L inherits Euclidean structure from R
n
 and we can consider the restrictions q1, . . . , qn : L 

−→ R of q1, . . . , qn onto L. Thus we can define the mixed discriminant D (q1, . . . , qm). Note that by choosing 

an orthonormal basis in L, we 

can 

associate m × m symmetric matrices Q ,... ,Q 

m 

with q , . . . , q . A diff erent 

b  b  1  1  m 
U ∗Q U for 

choice of an 

orthonormal basis results in the transformation Q  → 

b b 

b 

 

b 

  i   i  

      which does not change the 

some m × m orthogonal matrix U and i = 1, . . . , m, b  b    

   b b    

b 

  

b 

  

mixed discriminant D  Q1 , . . . , Qm  .        

(2.4) Lemma. Letq1, . . . , qn:R
n
−→Rbe anα-conditionedn-tuple of positivedefinite quadratic forms. Let L ⊂ R

n
 

be an m-dimensional subspace, where 1 ≤ m ≤ n, let T : L −→ R
n
 be a linear transformation such that ker T = 

{0} and let τ1, . . . , τm> 0 be reals. Let us define quadratic forms p1, . . . , pm : L −→ R by 

 

pi(x) = τiqi(T x) for x ∈ L and i = 1, . . . , m. 

 

Suppose that 

 

X
m 

pi(x) = x 
2
 for all x ∈ L and tr pi = 1 for i = 1, . . . , m. 

i=1 

 

Then the m-tuple of quadratic forms p1, . . . , pm is α
2
-conditioned. 
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This version of Lemma 2.4 and the following proof was suggested by the anony-mous referee. It replaces an 

earlier version with a weaker bound of α
4
 instead of 

α
2
. 

Proof of Lemma 2.4. Let us define a quadratic form q : R
n
 −→ R by 

Xm 

  q(x) = τiqi(x) for all x ∈ R
n
.    

   i=1             

Then q(x) is α-conditioned and for each x, y ∈ L such that x =  y = 1 we have 

1 = q(T x) ≥ λMIN(q) T x 
2 

and 1 = q(T y) ≤ λMAX (q) T y 
2
, 

from which it follows that              

  

T x 
2 

≤ 

 λMAX (q)  

T y 
2 

   

   

λMIN(q) 

   

            

and hence                

(2.4.1) T x 
2 

≤ α T y 
2 

for all  x, y ∈ L  such that  x  = y  = 1. 

Applying (2.4.1) and using that the form qi is α-conditioned, we obtain 

 pi(x) =τiqi(T x) ≤ τi (λMAX qi) T x 
2 

≤ ατi (λMAX qi) T y 
2 

(2.4.2)  ≤α
2
τi (λMINqi) T y 

2 
≤ α

2
τiqi (T y)    

  =α
2
pi(y) for all x, y ∈ L such that x  = y  = 1, 

and hence each form pi is α
2
-conditioned.         

Let us define quadratic forms ri : L −→ R, i = 1, . . . , m, by   

 ri(x) = qi(T x)  for x ∈ L and  i = 1, . . . , m.  

Then                

 ri(x) ≤ αrj (x) for all 1 ≤ i, j ≤ m and all x ∈ L. 

Therefore,                

  tr ri  ≤ α tr rj for all  1 ≤ i, j ≤ m.    

Since 1 = tr pi = τi tr ri, we conclude that τi = 1/ tr ri and, therefore, 

(2.4.3)  τi  ≤ ατj for all 1 ≤ i, j ≤ m.    

 

Applying (2.4.3) and using that the n-tuple q1, . . . , qn is α-conditioned, we obtain pi(x) =τiqi(T x) ≤ ατj qi(T x) ≤ 

α
2
τj qj (T x) 

(2.4.4) 

=α
2
pj (x) for all x ∈ L. 

 

Combining (2.4.2) and (2.4.4), we conclude that the m-tuple p1, . . . , pm  is α
2
- 

 

conditioned. 

 

(2.5) Lemma. Letq1, . . . , qn:R
n
−→Rbe positive semidefinite quadratic formsand suppose that 

qn(x) =  u, x 
2
, 



Concentration of the Mixed Discriminant of Well-Conditioned Matrices. 

62 

 

where u ∈ R
n
 and u = 1. Let H = u⊥ be the orthogonal complement to u. Let qb1, . . . , qbn−1 : H −→ R be the 

restrictions of q1, . . . , qn−1 onto H. Then 

 

D(q1, . . . , qn) = D (qb1, . . . , qbn−1) . 

 

Proof. Let us choose an orthonormal basis of R
n
 for which u is the last basis vector and let Q1, . . . , Qn 

be the matrices of the forms q1, . . . , qn in that basis. Then the only non-zero entry of Qn is 1 in the lower right 

corner. Let Q1, . . . , Qn−1 be the 

    − Then 

b upper left (n − 1) × (n − 1) submatrices of Q1, . . . , Qn1. b  

det (t1Q1 + . . . + tnQn) = tn det  t1Q1 + . . . + tn−1Qn−1  

and hence by (1.1.1) we have   b  b  

b 

D (Q1, . . . , Qn) = D  Q1, . . . , Qn−1   .   

b   b b 

−  . 

 

  − matrices of q , . . . , q  

On the other hand, Q1, . . . , Qn1 are the b b 1 n 1  

Finally, the last lemma before we embark on the proof of Theorems 1.4 and 1.6. 

 

(2.6) Lemma. Letq:R
n
−→Rbe anα-conditioned quadratic form such that 

tr q = 1.  Let H ⊂ R
n
  be a hyperplane and let q be the restriction of q onto H. 

Then 

tr q ≥ 1 − 

α 

. b   

Proof. Let b    n  

 0 < λ1  ≤ . . . ≤ λn 

be the eigenvalues of q. Then       

n       

X 

λi = 1 and 
λ
n ≤ αλ1,  

i=1       

from which it follows that   

α 

 

 

λn  ≤ 

 

  

. 

 

 n  

 

As is known, the eigenvalues of q interlace the eigenvalues of q, see, for example, 

Section 1.3 of [Ta12], so for the 

eigenvalues µ ,... ,µ −   of q we have 

b  1  n  1   

b 

 

λ1  1 ≤ λ2   
λ
n  1  n  1 n 

 ≤ µ   ≤...≤  − ≤ µ −  ≤ λ . 

Therefore,               

   n−1 n−1         

   X X    α    

 

tr q = 

 

µi  ≥λi  ≥ 1 − 

 

. 

  

  n  

    b  i=1        
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   i=1         

 

III. PROOF OF THEOREM1.4 AND THEOREM1.6 
Clearly, Theorem 1.6 implies Theorem 1.4, so it suffices to prove the former. 

(3.1) Proof of Theorem 1.6. As in Section 2.3, we associate quadratic formswith matrices. We prove the 

following statement by induction on m = 1, . . . , n. 

Statement: Letq1, . . . , qn:R
n
−→Rbe anα-conditionedn-tuple of positivedefinite quadratic forms. Let L 

⊂ R
n
 be an m-dimensional subspace, 1 ≤ m ≤ n, let T : L −→ R

n
 be a linear transformation such that ker T = {0} 

and let τ1, . . . , τm> 0 be reals. Let us define quadratic forms pi : L −→ R, i = 1, . . . , m, by 

 pi(x) = τiqi(T x) for x ∈ L and i = 1, . . . , m 

and suppose that        

m         

X 

pi(x) =  x 
2
   for all x ∈ L and tr pi = 1 for 

 

i = 1, . . . , m.   

i=1         

Then      

k=2 k 
!. 

(3.1.1) D(p1, . . . , pm) ≤ exp −(m − 1) + α
2 

      m 1  

      X   

 

In the case of m = n, we get the desired result. 

The statement holds if m = 1 since in that case D(p1) = det p1 = 1. 

 

Suppose that m > 1. Let L ⊂ R
n
 be an m-dimensional subspace and let the linear transformation T , 

numbers τi and the forms pi for i = 1, . . . , m be as above. By Lemma 2.4, the m-tuple p1, . . . , pm is α
2
-

conditioned. We write the spectral decomposition 

X
m 

pm(x) = λj  uj , x 
2
, 

j=1 

 

where u1, . . . , um∈ L are the unit eigenvectors of pm and λ1, . . . , λm> 0 are the corresponding eigenvalues of pm. 

Since tr pm = 1, we have λ1 + . . . + λm = 1. Let Lj = u⊥j, Lj⊂ L, be the orthogonal complement of uj in L. Let 

 

pbij : Lj −→ R for i = 1, . . . , m and j = 1, . . . , m 

 

be the restriction of pi onto Lj . 

 

Using Lemma 2.5, we write 

 

       m     

 

        

        X          

D(p1, . . . , pm) =  λj D  p1, . . . , pm−1, uj , x 
2 

 

       j=1            

       m               

       X  

 b 

 

b  

  

       m        

(3.1.2)      =  λj D 
p
1j 

, . . . , p
(m−1)j where 

       j=1            

       X            

         λj = 1  and  λj> 0  for  j = 1, . . . , m. 
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       j=1            

Let                      

Since  σj = tr pb1j + . . . + tr pb(m−1)j  for  j = 1, . . . , m. 

m−1                      

X    

x 
2
 − pmj (x) 

 
for all  x ∈ Lj and 

 

j = 1, . . . , m pij (x) =   

b       b               

i=1                      

       
2
 conditioned, by Lemma 2.6, we have 

and since the form pbmj is α -     α
2 

     

(3.1.3) 

   

σj  ≤ m − 2 + 

   

 for 

 

j = 1, . . . , m. 

 

    m    

Let us define                      

r
ij = 

 m − 1 

pbij   for i = 1, . . . , m − 1  and  j = 1, . . . , m. 

   

 σj  

Then by (3.1.3),                 

 

   

 
D  p

1j 
, . . . , p

(m−1)j   
=

m−1 
D  r

1j 
, . . . , r

(m−1)j 

   

b 

   

b 1 

 

 

   

α2 

 m−1 

 

 

            m−1  

               
σ
j      

(3.1.4) 

  

≤ 1 − 

 

+ 

 

  D  r1j , . . . , r(m−1)j   m − 1 m(m − 1) 

        α2            

   

≤ exp  −1 + 

 

D  r1j , . . . , r(m−1)j 

  

   m   

      for  j = 1, . . . , m.      

In addition,                      

(3.1.5) tr r1j + . . . + tr r(m−1)j = m − 1  for j = 1, . . . , m. 

             11       

 

For each j = 1, . . . , m, let w1j , . . . , w(m−1)j : Lj −→ R be a doubly stochastic (m− 1)-tuple of quadratic forms 

obtained from r1j , . . . , r(m−1)j by scaling as described in Theorem 2.1. From (3.1.5) and Lemma 2.2, we have 

 

(3.1.6) D  r1j , . . . , r(m−1)j ≤ D  w1j , . . . , w(m−1)j for j = 1, . . . , m. 

Finally, for each j = 1, . . . , m, we are going to apply the induction hypothesis 

to the (m − 1)-tuple of quadratic forms w1j , . . . , w(m−1)j : Lj −→ R. Since the (m − 1)-tuple is doubly stochastic, 

we have 

 

mX−1 
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wij (x) = x 
2
 for all x ∈ Lj and all j = 1, . . . , m 

(3.1.7) 
i=1 

and 

tr wij = 1 for all i = 1, . . . , m − 1 and j = 1, . . . , m. 

 

Since the (m − 1)-tuple w1j , . . . , w(m−1)j is obtained from the (m − 1)-tuple r1j , . . . , r(m−1)j by scaling, there are 

invertible linear operators Sj : Lj −→ Lj and real numbers µij> 0 for i = 1, . . . , m − 1 and j = 1, . . . , m such that 

 

wij (x) = µij rij (Sj x) for all x ∈ Lj       

    and all i = 1, . . . , m − 1 and j = 1, . . . , m. 

In other words,             

 

w  (x) =µij rij (Sj x) = 

µij (m − 1) 

pij (Sj x) = 

µij (m − 1) 

pi (Sj x)    

(3.1.8) ij 

= 

µij (m − 1)τi   σj  b   σj 

    

qi (T Sj x) for all x ∈ Lj 

  

  
σ
j 

   

             

    and all i = 1, . . . , m − 1  and j = 1, . . . , m. 

Since for each j = 1, . . . , m, the linear transformation T Sj : Lj  −→ R
n
  of an 

(m − 1)-dimensional subspace Lj⊂ R
n
 has zero kernel, from (3.1.7) and (3.1.8) we can apply the induction 

hypothesis to conclude that 

(3.1.9) 
D  w

1j 
, . . . , w

(m−1)j ≤ exp −(m − 2) + α
2 

k=2 k ! 

 

  

 m−1 1  

  X   

 

for j = 1, . . . , m. 

Combining (3.1.2) and the inequalities (3.1.4), (3.1.6) and (3.1.9), we obtain (3.1.1) 

and conclude the induction step. 
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